Были ли американцы на Луне? Опрос


Куратор темы: Уралец



Начать новую тему Ответить на тему  [ Сообщений: 40663 ]  Стрaница Пред.  1 ... 530, 531, 532, 533, 534, 535, 536 ... 2034  След.

Были ли американьци на Луне
Да 27%  27%  [ 62 ]
Уралец, Политрук, Тракторист, hunta, Синий апельсин, val1954, Простите великодушно, Soft123, Dovbnya, VSU, voleg5, Wal, Bear22, Гуго де Аришак, Авраам, Дмитрий, Игорь, Машинист, Довгочхун, Неэлитный, shura, sturm, Екатеринбуржец, Мляхин-Бухин, sanyok, mik, jericho, malia25, ILPetr, Валера Н.С., santey, ватервейс, Опасный, Барыга, Ромашки спрятались, Шарик, coon, незнамокто, Жигули, Бёртон, Руссиано, bootini, отморозов, Сергей Юрьевич Беляков, Gudas, koctya, voila, dmch, из Тамбова, Блейн Моно, sves, BaRik, Олег, Snufkin, Бинго-Бонго
Нет 73%  73%  [ 170 ]
Летчик-налетчик, Gilmir, I'm, astalavista, system, Seaman, vs773, gogun, санитар, woland69, GLOBUS_RU, Лук, Med, Аленка, Медвежуть, Ворчун, TambWolf, Борзый, Торк, Redoutable, johannwob, Yetty, Зеленый Иван, GARRI51, Hant, Far East, pt_usa, Прохорold, dimkin, B.G., Лубенчанин, Мухельзон, Пфердыч, Индифферент, waheed, IgorGr, Dworkin, Моцарт, Tired Cat, Maxsbor, Irma-is-home, ЦВЕТОЧЕК, LeDokoL, кдво, Oldmerin, kvid, Ocean, aqvarium12, Wildcat, ВладимирТ90, Мордвин, Зловунов, Зося, Лика, Бордюр, vasis, Пиксол, antisaks, Простой2, Zugzwang, Sandr0, alex_CA, Алабай, Andy_CZ, Пушыстый ПесецЪ, aleksa77, ёкарныйбабай, Лапоть, камчан, Додж, Чупакабра, KoTMaT, inbox, parasol, ozzy, АЛЕКС..., Artooro, 10111, Resident-007, Tolmach.001, Cool17304, GOLBERG, CRIMSON, alex_74, lisica, andrex13, OLP-10, Сталкер, Reader, Гость, Кот_Инвойс, Nord Stream, zztop, орнитолог, Мистер Фикс, Old_Fox, Гость, 0dess1t, kopaldis, Ледогор, Re, S_Finks, kinet, Гость, Wudu2, дед Пихто, Москаль з Батькiвщины, j0ker, мираж, Коля, ALich, вась вась, bes, Громобой, Какамалака, Tolyanych, Ботан, Гость, Вася Rabinovich, Гришаня, Таксибе, Сергий Харченко, Шмяк, alekzenkov, Ярозавр, Палач Рока, sa78, Platoon, Сергей, Майк, Локакс, Branby, Казак, Fylhtq, хрюн моржов, Жан ду-ду, Vlad_K, Timon555, Prig-Skok, приам, Бобровая Шапка, Rec, Vint7, igg, deborgel, Шейла, Iwand, Арарат, sanches1972, опана, Fire Dragon
Всего голосов : 232
Автор  
#10641  Сообщение 01.11.17, 23:03  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
Аналитическое описание цифрового автопилота

Построение каналов тангажа и рыскания управления вектором тяги ЦАП может быть выполнено с помощью частотных характеристик разомкнутой системы. Эти характеристики выражаются членами функции разомкнутой цепи

которая описывает ЦАП с разомкнутой цепью на входе в компенсирующий фильтр. Сомножители правой части уравнения (22.1) соответственно представляют частотные характеристики компенсирующего фильтра, контура компенсации эксцентриситета тяги, системы ЖРД-аппарат, параллельной комбинации обратной связи управления ориентацией ЦАП и управления траекторией полета.
Частотные характеристики ЦАП могут быть представлены произведением

2 других сомножителя благодаря соответствующему выбору параметров близки к единице.
С целью выбора корректирующих фильтров удобно перейти от частотных характеристик в области реальных частот D*(j?) и G*(j?) к эквивалентным частотным характеристикам D (ju) и G (ju) в ?-области.
Прежде всего отметим, что D(ju) и G (ju) получаются путем подстановки ?=ju в ?-преобразование

Эти ?-преобразования затем подвергаются z –преобразованиям. После этого с помощью подстановки z=esT могут быть получены частотные характеристики в области реальных частот.

Аналогично эти характеристики могут быть получены из ?-преобразования путем z –?-преобразований:

откуда угол

или

Таким образом

Использование частотных характеристик D(ju) и G(ju) предпочтительнее, чем характеристик D*(j?) и G*(j?), так как их легче выразить аналитически и перевести в z –область для реализации бортовой ЭЦВМ. Кроме того, соотношение u=tg(?T/2) легко использовать для определения значений, соответствующих критическим частотам изгибных колебаний и колебаний от плескания жидкости.
Частота квантования ЦАП,

выбирается таким образом, чтобы ее половина значительно превышала резонансные частоты колебаний корабля Apollo и основного блока.
Из характеристик G (ju) или G*(j?)), выделяя сомножители, обусловленные изгибными колебаниями и плесканием жидкости, получим чистую характеристику аппарата, как твердого тела Gr(ju) или С*r(j?). Компенсирующие звенья могут быть спроектированы на основе произведения D(ju)Gr(ju), эквивалентного D*(j?) G*r(j?), с добавлением к этим частотным характеристикам функций влияния плескания топлива и изгибных колебаний при различных количествах топлива в баках.
Процесс проектирования упрощается использованием программы для вычислительной машины, которая строит амплитудные и фазовые характеристики D(ju)Gr(ju) в функции
?=(2/T)tg^-1u (22.10)
В результате получаются графики D*(j?) G*r(j?), которые модифицируются с помощью функций M(j?) и Н(j?) для определения разомкнутой частотной характеристики аппарата как твердого тела
G0r(j?)=D*(j?) M(j?) G*r(j?)Н (j?) (22.11)

  Профиль  
  
    
#10642  Сообщение 01.11.17, 23:04  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
Контур компенсации эксцентриситета вектора тяги

Влияние контура компенсации эксцентриситета вектора тяги на характеристики разомкнутой цепи ЦАП по конструктивным соображениям ограничивается областью ниже 2 рад/сек. Это значительно ниже частоты квантования интегратора этого контура, равной 2 гц (12,56 рад/сек), и частоты квантования ЦАП (25 гц для основного блока и 12,5 гц для корабля Apollo). Можно показать, что влияние указанных частот квантования пренебрежимо мало в диапазоне частот до 2 рад/сек, и контур компенсации эксцентриситета вектора тяги может быть аппроксимирован передаточной функцией непрерывного сигнала вида

где Км – коэффициент усиления контура компенсации эксцентриситета вектора тяги;
Тм – постоянная времени низкочастотного фильтра.

  Профиль  
  
    
#10643  Сообщение 01.11.17, 23:04  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
Контур управления траекторией полета

Динамика контура управления траекторией полета зависит от времени до окончания работы ЖРД, tgo. Для больших значений tgo этой зависимостью можно пренебречь при выводе передаточных функций контура управления траекторией полета. Эти функции даже в приближенном виде весьма полезны для понимания влияния контура управления траекторией полета на работу ЦАП в целом.
Контур управления траекторией полета выполняет следующие операции.
1. Приращения скорости, измеряемые акселерометром, накапливаются и вычисляется текущая скорость V;
2. Каждые 2 сек вычисляется разность Vg между требуемой скоростью Vr и текущей скоростью V.
3. Каждые 2 сек находится векторное произведение Vg и ?V, где ?V – изменение скорости в течение последних 2 сек.
4. Результат векторного произведения нормируется по отношению Vg и ?V и затем умножается на коэффициент усиления Ksteer для получения вектора команды скорости ориентации.
5. Вектор угловой скорости ориентации преобразуется п-систему координат, связанных с аппаратом, и определяются команды для угловых скоростей тангажа и рыскания.
6. Управляющие команды по угловой скорости аппарата умножаются на период квантования ЦАП Т, чтобы получить-приращения, которые подаются в ЦАП через каждые Т сек.
Приближенные аналитические соотношения, описывающие-динамику контура управления траекторией полета выводятся при следующих допущениях:
1) все тригонометрические функции заменяются их приближенными значениями для малых углов;
2) аппарат рассматривается как твердое тело с инерци-альной измерительной платформой, установленной в центре тяжести;
3) эффекты квантования пренебрежимо малы;
4) ось X аппарата и ось ЖРД первоначально выставлены параллельно вектору скорости Vr; в этом случае угол между вектором тяги и вектором Vr определяется как ? – ? (? – ориентация аппарата относительно вектора Vr, ? – отклонение ЖРД от начального направления; считается положительным, если создает положительное ускорение ?);
5) время tgo постоянно;
6) вектор Vr постоянен по величине и направлению;
7) запаздывание при вычислении в контуре управления траекторий полета пренебрежимо мало.
При сделанных допущениях угол между вектором тяги и вектором требуемой скорости определяется как ? – ?, а соответствующие углы в плоскости тангажа и в плоскости рыскания для векторов Vg и ?V аппроксимируются выражениями

(Ts – период квантования контура управления траекторией полета 2 сек).
Нормированное векторное произведение векторов Vg и ?V дает разность ?vg – ??V, которая после умножения на коэффициент усиления Kst дает сигнал по угловой скорости ориентации .
Эта команда по угловой скорости поступает в ЦАП в виде приращения ?cT, находится разность между командным и измеренным приращением для определения ошибки ориентации.
Таким образом, ?c образуется путем квантования с периодом 2 сек непрерывного интеграла от ?—? и последовательного преобразования в приращения, которые суммируются на интервале в Т сек. Такая комбинация двух периодов квантования и аналогичного интегрирования усложняет задачу учета влияния контура управления траекторией полета на устойчивость ЦАП.
Для упрощения анализа влияния управления траекторией полета автопилот можно рассматривать как элемент с непрерывным сигналом в контуре управления траекторией полета. Тогда остается только одна частота квантования 0,5 гц, связанная с формированием управляющего сигнала ?c. Частотную характеристику разомкнутого контура управления траекторией полета можно представить ?-преобразованием

где F1(?)-преобразование

F2(?) представляет процесс получения угла векторного произведения ?vg – ??V из интеграла (?—?); F1(?) описывает умножение этого угла на коэффициент усиления Kst для получения ?c, последующее интегрирование ?c для получения ?c', образования разности (?—?) автопилотом и ее интегрирование.
Взаимное влияние автопилота и процесса управления траекторией полета проявляется более наглядно с помощью приближенного аналитического метода, заключающегося в добавлении к частотной характеристике разомкнутого контура ЦАП влияния управления траекторией полета.
При этом предполагается, что эффекты транспонирования частот отсутствуют и частотная характеристика F1(?) может быть заменена частотной характеристикой в области реальных частот

а также имеет место

где Кr – коэффициент эффективности управления системы ЖРД-аппарат.
В предположении, что

F2(?) примет вид

Частотная характеристика разомкнутого контура управления траекторией полета может быть представлена в виде

где

В области низких частот, где применима функция Gst(j?), влияние управления траекторией на характеристики разомкнутого контура ЦАП можно аппроксимировать путем прибавления Gst(j?) к единичному коэффициенту обратной связи по углу ориентации

Следует заметить, что выражение H(j?) является хорошей аппроксимацией только для низких значений ?, меньше 0,2 рад/сек. Однако именно этот диапазон частот представляет наибольший интерес при анализе эффектов управления траекторией полета.

  Профиль  
  
    
#10644  Сообщение 01.11.17, 23:05  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
Стабилизация корабля Apollo

Необходимость стабилизации корабля при возникновении изгибных колебаний или плескания жидкости является одним из основных требований, предъявляемых к ЦАП.
Для стабилизации корабля как твердого тела в ЦАП были приняты следующие значения запасов устойчивости:

Указанные значения критериев устойчивости выбраны в предположении, что коэффициент усиления автопилота автоматически изменяется и компенсирует изменение характеристик цепи ЖРД-аппарат при выгорании топлива.
Для стабилизации корабля при возникновении изгибных колебаний или плескания жидкости в передаточной функции вводятся сомножители, расположенные вблизи от мнимой оси и соответствующих нулей.
Коэффициент усиления разомкнутой системы пропорционален произведению коэффициента усиления фильтра ЦАП Kz и квазистатического коэффициента цепи ЖРД-аппарат Kg, где

– передаточная функция ЖРД-аппарат.(22.26)
Kg зависит от количества топлива и изменяется по мере его выгорания. Эти изменения компенсируются обратнопропорциональным изменением коэффициента Kz, так чтобы общий коэффициент усиления контура оставался неизменным.
Таким образом устойчивость корабля как твердого тела при возникновении изгибных колебаний и плескании жидкости обеспечивается выбором компенсирующего фильтра.
На режиме широкого диапазона работы фильтр обеспечивает стабилизацию корабля от изгибных колебаний путем создания фазового запаздывания на низких частотах и затухания на высоких частотах.
Стабилизация корабля от плескания жидкости осуществляется за счет создания фильтром фазового опережения.
Компенсирующий фильтр обеспечивает стабилизацию корабля за счет фазового запаздывания при изгибных колебаниях с частотами ниже 8,4 рад/сек. При этом запас устойчивости на резонансной частоте составляет 35°.
На режиме широкого диапазона работы обеспечивается стабилизация корабля при возникновении любых плесканий жидкости в баках корабля. Этот случай соответствует номинальным условиям – полному заполнению баков корабля.
Максимальная частота плескания жидкости, при которой обеспечивается стабилизация корабля, составляет 4,075 рад/сек, что на 20% превышает максимум частоты для номинальных условий, равный 3,4 рад/сек.
На режиме узкого диапазона работы фильтр обеспечивает стабилизацию корабля от высокочастотных плесканий жидкости при неполных баках созданием затухания до 57 дб. Стабилизация корабля от частоты плескания жидкости, которая ниже 2,08 рад/сек, осуществляется за счет фазового запаздывания. Затухание изгибных колебаний осуществляется более чем на 100 дб.

  Профиль  
  
    
#10645  Сообщение 01.11.17, 23:06  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
Параметры конструкции цифрового автопилота

Для обоих конфигураций летательного аппарата, корабля Apollo и основного блока в ЦАП используется компенсирующий фильтр шестого порядка, состоящий из трех каскадных секций второго порядка.
В ЦАП корабля Apollo используются все 3 секции, на основном блоке только 2. Структура и параметры компенсирующих фильтров ЦАП представлены на рис. 22.4.

Рис. 22.4. Структурная схема компенсирующего фильтра шестого порядка цифрового автопилота.

В табл. 17 приведены численные значения параметров контуров управления траекторией полета и компенсации эксцентриситета вектора тяги [20].
Таблица 17

  Профиль  
  
    
#10646  Сообщение 01.11.17, 23:06  
Луганчанка
Аватара пользователя

Регистрация: 16.01.2015
Сообщения: 36258
Откуда: Луганск
Благодарил (а): 6289 раз.
Поблагодарили: 4269 раз.
Россия
Жигули писал(а):
Там дальше самое интересное.
Про калоприёмники.
Жигульчик, и не уговаривай! это вообще не интересно :rzach:

  Профиль  
  
    
#10647  Сообщение 01.11.17, 23:07  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
2.3. Ручное управление кораблем Apollo

На всех этапах полета корабля Apollo, а также в критических и аварийных ситуациях управление кораблем может осуществляться астронавтами вручную. Система ручного управления обеспечивает стабилизацию полета по курсу, координированные развороты, команды на ориентацию и перемещение корабля в пространстве.
Отличительная особенность ручного управления лунного корабля в сравнении с другими летательными аппаратами состоит в том, что его динамические характеристики изменяются в широких пределах.

Рис. 23.1. Лунный корабль (посадочная конфигурация).

Рис. 23.2. Взлетная ступень.

Лунный корабль управляется вручную во всех трех конфигурациях (рис. 23.1, 2, 3). В посадочной конфигурации один лунный корабль с полным запасом топлива весит 15 т и имеет моменты инерции относительно осей крена, тангажа и рыскания 34 000; 33 900 и 31 200 кг·м? соответственно, когда израсходована половина запаса топлива. Моменты инерции уменьшаются до 20 300; 16 800; 16 200 кг·м? при полностью израсходованном топливе посадочной ступени. Взлетная ступень лунного корабля весит 4900 кг с полным запасом топлива и 2600 кг, когда топливо израсходовано. Начальные моменты инерции 8250; 4700 и 9100 кг·м? уменьшаются после израсходования топлива до 2800; 3900 и 4400 кг·м?.

Рис. 23.3. Корабль Apollo.

Лунный корабль, состыкованный с основным блоком с полным запасом топлива при весе 42 800 кг имеет момент инерции относительно оси рыскания 56 000 кг·м?, моменты инерции относительно осей крена и тангажа 676 000 и 671 000 кг·м?, соответственно.
В нормальных условиях полета Apollo моменты инерции могут изменяться в отношении 12 : 1, в аварийных ситуациях это отношение может возрасти до 243 : 1.
Ручное управление лунным кораблем астронавты осуществляют с помощью: рукояток ориентации и перемещения, бортовой ЭЦВМ, ЦАП, пульта управления и шарового индикатора полета.
Ручное управление ориентацией использует только ЖРД РСУ. Каждый ЖРД РСУ оси рыскания создает момент 695 н·м?, а каждый ЖРД крена и тангажа создают моменты по 746 н·м?.
Общее количество топлива на ЖРД РСУ составляет 267 кг, расход топлива на один ЖРД 0,16 кг/сек. ЖРД РСУ неэффективно работают при включении на очень короткие промежутки времени, топливо не полностью расходуется и может скапливаться в магистралях и камерах сгорания. Поэтому минимальный импульс был установлен 14·10? сек. Этот импульс определяет конечную угловую скорость, которая изменяется в зависимости от конфигурации аппарата.
Шаровой индикатор полета – это сфера с тремя степенями свободы, указывающая ориентацию и направление полета корабля; угловые скорости и ошибки ориентации указываются стрелками на фронтальной поверхности прибора вокруг сферы.
Трехосевая рукоятка управления ориентацией на выходе имеет 800 гц и напряжение, пропорциональное отклонению. От центрального положения до отклонения рукоятки на 2° – мертвый ход, отклонение на 10° до мягкого упора соответствует « полному ходу» рукоятки и напряжение на выходе равно 42 делениям. При отклонении рукоятки за мягкий упор, напряжение на выходе и число делений шкалы напряжения продолжают рости до жесткого стопора на 13° (рис. 23.4).

Рис. 23.4. Характеристика ручного управления

Управление ориентацией, перемещением с использованием ЖРД РСУ осуществляется с помощью бортовой ЭЦВМ лунного корабля по программам ЦАП. Ручное управление ориентацией использует эти же коды ЦАП, которые занимают 11% памяти бортовой ЭЦВМ.
Экипаж селектором может устанавливать любой из трех режимов работы ЦАП: «автоматическое управление», «ручное управление», «выключено».
В последнем режиме ЦАП выполняет только программу прерывания.
Режим «автоматического управления» устанавливается, когда осуществляется посадка с работающим ЖРД посадочной ступени, требующая автоматического выполнения маневров. Однако на этом режиме экипаж с помощью рукоятки может корректировать полет корабля по оси Х, пересиливая ЦАП. Во время выполнения ЦАП программы Р-64, отклоняя рукояткой управления корабль по тангажу и крену, дискретно изменяют угол наклона траектории и направление полета, ведя корабль к выбранному месту посадки. При этом ЦАП поддерживает оптимальный режим полета.
Если селектор ЦАП установлен на режим «ручное управление», астронавты с помощью рукоятки могут управлять кораблем относительно всех трех осей.
Экипаж, набирая необходимый код на пульте управления бортовой ЭЦВМ, может по желанию менять характеристики ЦАП, чувствительность рукоятки управления (нормальное или точное управление), ширину зоны нечувствительности при управлении ориентацией (узкая или широкая).
Нормальной чувствительности рукоятки соответствует максимальная командная угловая скорость 20 град/сек при отклонении рукоятки на 1/2 деления шкалы; при точном управлении такому же отклонению рукоятки соответствует командная угловая скорость 4 град/сек. Цена деления шкалы рукоятки управления 0,476 и 0,095 град/сек/деление. [5, 6, 17, 22.]

  Профиль  
  
    
#10648  Сообщение 01.11.17, 23:07  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
2.4. Цифровой автопилот лунного корабля

Цифровой автопилот лунного корабля обеспечивает управление на активных и пассивных участках траектории полета всех трех конфигураций: посадочной (рис. 23.1), взлетной (рис. 23.2) и всего корабля Apollo (рис. 23.3).

  Профиль  
  
    
#10649  Сообщение 01.11.17, 23:08  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
Характеристики летательного аппарата

Лунный корабль имеет три основных источника управляющих сил и моментов: ЖРД посадочной и взлетной ступени и ЖРД реактивной системы управления. В табл. 18 приведены характеристики управляющих сил и моментов.
ЖРД РСУ обеспечивают ручное и автоматическое управление ориентацией и малые поступательные перемещения для всех конфигураций летательного аппарата на пассивных участках траектории полета.
На активных участках траектории полета с помощью ЖРД РСУ осуществляются управление ориентацией и стабилизация, причем включаются те ЖРД РСУ, которые создают приращение скорости в желаемом направлении.
Так как ЖРД взлетной ступени имеет вектор тяги, постоянный по направлению, закон управления ЖРД РСУ приспособлен к парированию больших и переменных по времени возмущающих моментов на активном участке траектории полета взлетной ступени.
Таблица 18

Во время работы ЖРД посадочной ступени управление ориентацией относительно оси рыскания Р осуществляется ЖРД РСУ, а относительно осей тангажа Q и крена R путем сочетания ЖРД РСУ и отклонения на кардане ЖРД посадочной ступени.
Расположение и ориентация ЖРД РСУ такова, что если центр тяжести летательного аппарата лежит вблизи геометрического центра 16 ЖРД РСУ (что соответствует взлетной ступени), тогда 8 «Р ЖРД», создающие тягу в направлении У или Z, дают момент, только относительно оси Р, 4 «U ЖРД», действующие в направлении ±Х, создают момент только относительно оси U и 4«V ЖРД», действующие в направлении ±Х, создают момент только относительно оси V (рис. 24.1).

Рис. 24.1. Расположение относительно осей координат ЖРД реактивной системы управления лунного корабля:
ЖРД 2, 4, 5, 8, 10, 11, 13, 15 топливная система А;
ЖРД 1, 3, 6, 7, 9, 12, 14, 16 топливная система В;
Р, Q, R – связанная система координат;
X, Y, Z – ннерциальная система координат

  Профиль  
  
    
#10650  Сообщение 01.11.17, 23:09  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
Конструктивные особенности и ограничения

Стремление сделать конструкцию корабля Apollo легкой привело к тому, что узел стыковки командного отсека с лунным кораблем оказался не очень жестким, вследствие этого возникают изгибные колебания Apollo. Те же требования легкости конструкции заставили отказаться от перегородок в баках для гашения плескания топлива, что привело к появлению вынужденных колебании Apollo и несбалансированных моментов при работе ЖРД взлетной ступени. Из-за затемнения иллюминаторов частицами выхлопных газов наложены ограничения на включение ЖРД РСУ. Для безопасности экипажа и предотвращения резких забросов сервопривода ЖРД посадочной ступени специальным механизмом ограничивается скорость сервопривода до 0,2 град/сек. Расположение ЖРД РСУ под углом 45° к осям связанной системы координат приводит к взаимному влиянию управления с помощью ЖРД РСУ (оси U, V) и управления отклонением ЖРД посадочной ступени (оси Q, R).

  Профиль  
  
    
#10651  Сообщение 01.11.17, 23:09  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
Режим работы цифрового автопилота лунного корабля

Режимы работы ЦАП лунного корабля определяются необходимостью обеспечить все этапы полета лунного корабля no программе полета Apollo с посадкой на Луне. Режимы полета включают: маневры ориентации относительно центра масс на произвольные углы, стабилизацию заданной ориентации, поступательные перемещения с помощью ЖРД РСУ, маневрирования на активных участках траектории полета посадочной и взлетной ступеней лунного корабля. Ниже приводится перечень режимов работы ЦАП лунного корабля.

  Профиль  
  
    
#10652  Сообщение 01.11.17, 23:10  
Ветеран

Регистрация: 28.05.2016
Сообщения: 27611
Откуда: Нерезиновая
Благодарил (а): 70 раз.
Поблагодарили: 506 раз.
Россия
В музее КОЦМАСА шо у ВДНХ автоматы с тюбикаме . А в тюбиках космическая Еда.

  Профиль  
  
    
#10653  Сообщение 01.11.17, 23:10  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
Описание цифрового автопилота лунного корабля

Необходимая информация для решения задач управления ЦАП поступает с гиростабилизированной платформы блока инерциальных измерений. Информация об угловой ориентации аппарата снимается непосредственно с рамок и подается в блок преобразования данных. Информация о поступательных перемещениях снимается с импульсных интегрирующих маятниковых акселерометров, расположенных на гиростабилизированной платформе. Специальные датчики угловой скорости не применяются. Оценка угловой скорости (с последующей фильтрацией) и возмущающего ускорения производится ЦАП лунного корабля.
ЦАП лунного корабля состоит из трех подсистем: расчета ориентации, законов управления ЖРД РСУ и законов управления вектором тяги ЖРД посадочной ступени. Законы управления ЖРД РСУ разделены на 3 отдельных канала, Р, U, V. Законы управления отклонением вектора тяги ЖРД посадочной ступени разделяются на 2 канала Q и R. Расчет точной настройки отклонения вектора тяги для каждого канала основывается на независимом законе управления в одной плоскости.
Основной период квантования автопилота 0,1 сек, но обычно для выполнения расчетов ЦАП требуется 0,025 сек. В дополнение к основной программе ЦАП имеется спецпрограмма, которая на активном участке траектории полета выполняется каждые 2 сек, приводит в соответствие цепи автопилота, зависящие от уменьшения массы аппарата, и рассчитывает смещение углового ускорения от действия тяги главного ЖРД.
На рис. 24.2 изображена блок-схема управления стабилизацией аппарата на пассивных участках траектории полета.
Основными элементами системы являются блок оценки угловых переменных, блоков законов управления ЖРД РСУ, блок логики выбора ЖРД РСУ.
В алгоритме оценки угловых переменных в качестве основных измеряемых величин используются углы отклонения инерциальной стабилизированной платформы. На пассивном участке траектории полета в алгоритме оценки вырабатываются как угол, так и угловая скорость. При этом применяется нелинейная пороговая логика для подавления шумов измерения низкого уровня. Информация об угловом ускорении при включении ЖРД РСУ также вводится в алгоритм оценки. Управляющие импульсы формируются с помощью законов управления на основе информации об ошибке ориентации, эффективности управления и логических функций на фазовой плоскости. В блоке логики выбора ЖРД РСУ, осуществляется выбор включения ЖРД, в которых сочетается создание требуемых моментов с необходимым направлением поступательного перемещения. Кроме того, в системе имеется временная логика включения ЖРД РСУ для определения условий управления относительно осей U, V двумя ЖРД РСУ, а относительно оси Р четырьмя ЖРД.

Рис. 24.2. Блок-схема управления стабилизацией.

На рис. 24.3 изображена блок-схема автоматического управления ориентацией аппарата на пассивных участках траектории полета.
Автоматическое управление ориентацией осуществляется при помощи тех же логических операций, что и стабилизация ориентации, но с добавлением программы изменения ориентации. Эта программа вычисляет требуемые управляющие команды по углу и угловой скорости и ряд углов запаздывания ?. Углы запаздывания вводятся для предотвращения перерегулирования в начале и в конце маневра. Упрощенные уравнения программы маневра изменения ориентации имеют вид:

где уравнение (24.1) решается с периодом цикла управления траекторией полета (?Тc=Nj—Nj-1=2 сек), а уравнение (24.2)—с периодом цикла управления ориентацией (T=0,1 сек). Величина ?d задается угловой скоростью маневра, а величина ?j определяется как предполагаемое угловое ускорение от двух ЖРД РСУ. По окончании маневра величины ?d, ??d и ? обнуляются и система возвращается к режиму стабилизации вновь заданной ориентации.

Рис. 24.3. Блок-схема автоматического управления ориентацией лунного корабля на пассивных участках траектории полета.

Автоматическое управление аппаратом на активных участках траектории полета значительно сложнее, чем на пассивных. На активных участках к программе ЦАП управления ориентацией добавляются программа управления траекторией полета, программа вычисления массы корабля, в алгоритме оценки определяется угловое ускорение а; законы управления ЖРД РСУ видоизменяются таким образом, чтобы по оцененному значению углового ускорения ввести поправку в текущее значение эффективности управления; на участках снижения и посадки на Луну осуществляется управление величиной и направлением вектора тяги посадочного ЖРД, с учетом взаимодействия с ЖРД РСУ.
Масса корабля и тяга ЖРД рассчитываются ЦАП каждые 2 сек по уравнениям

Эти расчеты вводятся в цепь настройки ЦАП. Эффективность управления ЖРД РСУ относительно осей Р, Q, R рассчитывается по уравнению

где аj – угловое ускорение корабля; С1, С2, С3 – константы пропорциональные оставшейся массе.
Выбор констант С1, С2, С3 осуществляется для каждой оси и каждой конфигурации аппарата – посадочной и взлетной.
Таким образом подсчитанные величины ортогональных компонентов угловых ускорений ?qu и ?ru затем пересчитываются относительно оси V' для определения ?u'u. Вследствие инерциальной симметрии значения ?u'u можно использовать и для расчетов относительно оси V.
Эффективность сигнала управления вектором тяги посадочного ЖРД рассчитывается по уравнению

где ?q, ?r– изменение углового ускорения вследствие поворота тяги относительно осей Q и R; F– рассчитываются по уравнению (24.5); Iq и Ir – величины, обратно пропорциональные ?qu и ?ru; L – определяется по уравнению

Рис. 24.4. Блок-схема автоматического управления лунным кораблем на активных участках полета при посадке на Луну

На рис. 24.4 изображена блок-схема автоматического управления аппаратом на активных участках траектории полета при посадке на Луну.

  Профиль  
  
    
#10654  Сообщение 01.11.17, 23:11  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
Алгоритм расчета ориентации

Структура алгоритма расчета ориентации была выбрана на основе калмановской теории фильтрации. Принцип работы алгоритма состоит в сравнении экстраполированных и измеренных значений угла.
Для расчета ориентации аппарата необходимыми ЦАП исходными измерениями являются углы кардана инерциальной стабилизированной платформы, которые выдаются каждые 0,1 сек. Чтобы выделить любые смещения углового ускорения, являющиеся следствием тяги посадочного ЖРД от углового ускорения, создаваемого ЖРД РСУ, в блок расчета ориентации необходимо ввести дополнительную информацию. Вводя информацию о работе ЖРД РСУ и информацию об управлении вектором тяги посадочного ЖРД, можно осуществить фильтрацию основных сигналов управления ориентацией, не прибегая к сложным цепям расчета угловой скорости и смещения углового ускорения.
Изменения угловых скоростей аппарата от действия ЖРД РСУ на интервале последнего управления рассчитываются по формулам

Смещение углового ускорения, происходящее вследствие команд на отклонение вектора тяги на интервале последнего управления, подсчитывается по уравнению

где T=0,1 сек период квантования; uq, ur – (+ 1,0—1) командные сигналы на поворот вектора тяги относительно осей Q и R.
Углы кардана инерциальной стабилизированной платформы, полученные в процессе предыдущего выполнения расчетов, хранятся в блоке памяти бортовой ЭЦВМ. Измерив углы кардана в данный момент, можно рассчитать изменение углов и перевести в изменение углов аппарата.
Разность между измеренным изменением ориентации и предсказанным изменением называется «необъяснимым» изменением ориентации. «Необъяснимое» изменение вычисляется и прибавляется к суммарному предыдущему «необъяснимому» изменению, образуя «необъяснимое» изменение ориентации в данный момент

где ?p, ?q, ?r – компоненты «необъяснимого» изменения ориентации по осям Р, Q, R.
Выражения в скобках в правой части уравнений (24.11) можно определить как компоненты предсказанного изменения ориентации. Заметим, что предсказанное изменение ориентации исключается вследствие команд на привод кардана ЖРД и точное выражение для изменения ориентации в результате работы ЖРД РСУ аппроксимируется более простым выражением.
«Необъяснимое» изменение ориентации используется для уточнения расчетов угловой скорости и углового ускорения аппарата. Но вначале логика используется, чтобы исключить измеренный квантованный шум. Вследствие того, что вероятное распределение этого шума не гауссовское, а прямоугольное, в каждой из осей (Р, Q, R) блока расчета ориентации шум может быть исключен нелинейным логическим фильтром.
Для каждой из осей Р, Q, R, если компонент «необъяснимого» изменения ориентации меньше, чем пороговая величина ?max=0,14 град, в этом случае коррекции смещения? ?? и ?? для расчетов угловой скорости и углового ускорения считаются нулевыми.
«Необъяснимое» изменение ориентации не обнуляется и когда «необъяснимое» изменение ориентации превышает пороговую величину, вводится коррекция. Нулевые коррекции ?? и ?? рассчитываются по уравнениям

После введения коррекции «необъяснимое» изменение ориентации для этой оси вновь устанавливается равным нулю.
Расчет угловой скорости и смещения углового ускорения теперь производятся по уравнениям

Заметим, что смещение углового ускорения вокруг оси Р принимается равным нулю и на последнем интервале управления не учитывается изменение угловой скорости вследствие отклонения кардана ЖРД.
На пассивных участках траектории полета аппарата считается, что компоненты смещения углового ускорения по осям Q и R равны нулю.
Динамические характеристики блока расчета ориентации сильно зависят от выбора коэффициентов усиления цепей фильтра К? и К?. Выбор этих коэффициентов основывается на компромиссе между быстротой расчета и исключением колебаний из-за плескания топлива.
Учитываемые алгоритмом расчета ориентации динамические эффекты: плескание топлива, изгибные колебания, силовое взаимодействие выхлопных струй ЖРД РСУ с конструкцией корабля, запаздывание тяги ЖРД РСУ по отношению к командам, эксцентриситет тяги ЖРД РСУ, ускорение выхлопных струй ЖРД РСУ при перемещениях по У и Z, не обнаруженные неисправности ЖРД РСУ, запаздывание сервомотора кардана ЖРД, разброс моментов инерции, упругие деформации сервопривода, точность модели измерения количества топлива в баках.

  Профиль  
  
    
#10655  Сообщение 01.11.17, 23:12  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
Законы управления ЖРД реактивной системы управления

Быстрейшая скорость повторения расчетов для ЦАП, возможная в пределах расчетной нагрузки бортовой ЭЦВМ лунного корабля, составляет 10 цикл/сек. Однако для легкой взлетной ступени 2 ЖРД РСУ могут создать угловое ускорение 50 град/сек?.
Простейшим законом управления мог бы быть циклический закон, ЖРД РСУ включено – выключено. Но в этом случае точность управления угловой скоростью взлетной ступени была бы только 5 град/сек.
Для осуществления управления с необходимой точностью с помощью фактора эффективности управления точно определяется продолжительность включения ЖРД РСУ, потребная для необходимого изменения угловой скорости.
Порядок расчета времени работы ЖРД РСУ для случая автоматического управления одним лунным кораблем, запрограммирован для одной оси как функция:
1) ошибки ориентации ?е и ошибки угловой скорости ?е
2) параметров, рассчитываемых в цепи настройки, которые определяют кривизну и положение парабол фазовой плоскости;
3) оценки выгоды получения с одного или двух ЖРД требуемого импульса момента.
Обращаясь к этой программе и вводя на входе соответствующую информацию, определяют время работы ЖРД РСУ для каждой из осей.

Рис. 24.5. Закон управления ЖРД реактивной системы лунного корабля на пассивных участках траектории полета

Логика управления в пассивном полете иллюстрируется диаграммой в фазовой плоскости рис. 24.5. Фазовая плоскость выше оси ?е делится на 5 зон, ограниченных параболами.
В логике управления в фазовой плоскости ?е – ?е используется также угловое ускорение, складывающееся из углового ускорения от ЖРД РСУ и возмущающего углового ускорения. Крутизна парабол, ограничивающих зону 2 на фазовой плоскости, соответствует условию, когда на траектории работают ЖРД РСУ. Значения ускорений от ЖРД РСУ, которые определяют эту параболу, подсчитываются в контуре настройки. Парабола, разделяющая зоны 4 и 5, не траекторная. Это пологая кривая, поддерживающая управление с малой угловой скоростью, однако не настолько, чтобы существовали большие ?е.
Форма кривой сохранена параболической, чтобы логика границ была общей и удобной для компактности кодирования. Выбранная пологость соответствует угловому ускорению 1,4 град/сек?.
Пересечение парабол с осью ?е является функцией зоны
нечувствительности ?db, выбираемой астронавтом или программой, выполняющей автоматический маневр. Допустимые ошибки ориентации области зоны нечувствительности могут быть 0,3, 1 и 5°.
Фазовая плоскость сконструирована таким образом, что управляющее действие из любых начальных условии с помощью двух главных импульсов приводит к заданной ориентации. На рис. 24.8 это показано сегментом AВС.
После перехода в зону нечувствительности состояние аппарата определяется минимальным предельным импульсным циклом DEFG с единичным зажиганием одного ЖРД РСУ каждый раз при пересечении зоны 3.

Рис. 24.6. Закон управления ЖРД реактивной системы лунного корабля на активных участках траектории полета

На активных участках траектории полета используется логика управления, показанная на рис. 24.6. Точки пересечения парабол с осью ?e передвигаются в. зависимости от величины расчетного смещающего углового ускорения. Точки пересечения (1°, -2°, 0,75°), показанные на рисунке, типичны для активного участка взлета, когда вектор тяги ЖРД взлетной ступени смещен. Крутизна четырех парабол устанавливается по четырем разностям угловых ускорений. Верхняя левая парабола определяется минимальным ускорением ?min=1,4 град/сек?, как и в случае пассивного полета. Верхняя правая парабола определяется располагаемой разностью ускорений между ускорением от смещающего момента и противоположным по знаку ускорением от ЖРД РСУ.
Нижняя правая парабола определяется только смещающим угловым ускорением (ЖРД РСУ не работают).
Фазовая плоскость спроектирована так, что аппарат управляется низкочастотным предельным циклом, в котором один раз за цикл дается команда на зажигание ЖРД РСУ и отрабатывается единичный управляющий импульс, противоположный по знаку смещающему моменту.
Хотя ЦАП должен выполнять одни и те же функции управления аппаратом, когда лунный корабль состыкован с основным блоком и если он летит один, однако для состыкованной компоновки режим ЦАП разрабатывался отдельно.
Особенность проблемы заключалась в том, что в состыкованном виде корабль Apollo имеет 3 формы низкочастотных изгибных колебаний и слабый по прочности переходник, стыкующий основной блок и лунный корабль. Поэтому была разработана специальная логика торможения, исключающая, возможность зажигания ЖРД РСУ с частотой собственных изгибных колебаний корабля Apollo.
Кроме законов автоматического управления ориентацией аппарата с помощью ЖРД РСУ были разработаны специальные законы, обеспечивающие ручное управление. По законам ручного управления в зависимости от отклонения рукояток управления ориентацией вырабатываются сигналы на вход. в ЦАП.
При доводке характеристик ЦАП с использованием ортогональных осей координат Р, U, V применительно к законам управления ЖРД РСУ в фазовой плоскости относительно каждой отдельной оси было обнаружено перекрестное влияние каналов управления.
Распределение массы лунного корабля таково, что главные оси моментов инерции проходят вблизи осей Q и R, а не U и V. В результате, момент от ЖРД оси V порождает угловое ускорение не только относительно оси V, но и относительно оси U. Величина одновременно возникающего перекрестного ускорения такова, что в худшем случае вектор углового ускорения отклоняется на 15° от действующего вектора момента.
Чтобы устранить перекрестное влияние каналов управления ЖРД РСУ, была введена неортогональная система осей координат U' и V' (рис. 24.7).
Направление осей U' и V' определялось единственным требованием, чтобы направление U' было ортогонально угловому ускорению, возникающему от вектора момента оси V или вектора момента оси Р, направление V было ортогонально угловому ускорению, возникающему от вектора момента оси U или момента оси Р. Управления, определяющие угол ? имеют вид

Находя вектор ошибки ориентации и вектор ошибки угловой скорости на осях U' и V' и используя компоненты U' и V' для определения требуемых векторов моментов ЖРД РСУ по осям U и V, исключается перекрестное влияние каналов управления.

Рис. 24.7. Система неортогональных осей координат лунного корабля

  Профиль  
  
    
#10656  Сообщение 01.11.17, 23:12  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
Закон управления направлением вектора тяги

При проектировании управления карданом ЖРД для изменения направления вектора тяги посадочной ступени лунного корабля предусматривалось использование этого управления для совмещения вектора тяги с центром масс аппарата и уменьшения таким образом расхода топлива на ЖРД РСУ. Так как управление ориентацией должно обеспечиваться ЖРД РСУ, при проектировании не требовалось задавать большую угловую скорость изменения направления вектора тяги, и был выбран маломощный и легкий привод кардана, обеспечивающий изменение угла отклонения ЖРД со скоростью 0,2 град/сек. Привод связан с ЦАП простым принципом включено-выключено. Для обеих осей Q и R, вокруг которых можно поворачивать вектор тяги, ЦАП может давать команды на угловую скорость 0,2 град/сек; -0,2 град/сек или ноль.
Однако минимизация расхода топлива на ЖРД РСУ была основной проблемой, и так как в процессе торможения и посадки ЖРД посадочной ступени работает все время, искали закон управления ориентацией с использованием посадочного ЖРД и без включения ЖРД РСУ по каналам U и V. Выбранному закону соответствует минимальное время управления.
Дифференциальное уравнение, связывающее сигнал, управляющий карданом ЖРД, с отклонением лунного корабля от требуемой ориентации относительно осей Q и R, имеет вид

Первая и вторая производные от ошибки ориентации по времени есть ошибка угловой скорости и ошибка углового ускорения. Предполагая, что все переменные состояния, используемые законом управления, измеряются без шума и без ошибок, оптимальное управление можно определить как функцию состояния системы в данный момент следующим образом

Параметр С имеет размерность – время и обращает переменные состояния (?e, ?e, ?e) в безразмерные переменные (x1, X2, X3). Оптимальный управляющий сигнал uoptдается в безразмерных величинах состояния системы.

  Профиль  
  
    
#10657  Сообщение 01.11.17, 23:14  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
Работа цифрового автопилота при первой посадке на Луну

В процессе первой посадки на Луну ЦАП в начале управлял лунным кораблем в автоматическом режиме и в конце по командам от ручки управления ориентацией; при этом ориентация вектора тяги ЖРД и лунного корабля изменилась от горизонтальной в начале торможения до вертикальной при посадке.
Первые 4 мин активного участка торможения после начального неустановившегося режима закон управления ориентацией вектора тяги работал успешно, медленно изменяя ориентацию без помощи ЖРД РСУ по каналам U и V. Затем из-за плескания топлива в баках возникли колебания большой амплитуды, выходящей за пределы зоны нечувствительности закона управления ЖРД РСУ. ЦАП вырабатывал команды управления ЖРД РСУ, ограничивавшие амплитуду колебаний лунного корабля.
Колебания угловой скорости тангажа с частотой 0,5 гц из-за плескания топлива видны на рис. 24.8.

Рис. 24.8. Угловая скорость тангажа на активном участке траектории посадки лунного корабля Apollo-11

Автоматическое управление вело лунный корабль на посадку в кратер размерами с футбольное поле с большим количеством огромных камней. Н. Армстронг переключил ЦАП на ручное управление, изменил курс корабля, перелетел кратер, выбрал ровное место, и посадил корабль с помощью ручного управления.
После взлета с Луны управление с помощью ЦАП тангажом взлетной ступени показано на рис. 24.9. После старта и вертикального подъема в течение 10 сек была подана команда на автоматическое управление тантажом со скоростью 10 град/сек и выход на угол тангажа 52°.
После окончания маневра по тангажу наблюдался типичный низкочастотный предельный цикл изменения ориентации.
Когда было израсходовано все топливо взлетной ступени, ее центр масс переместился из заднего в переднее положение. При взлете центр масс был сзади вектора тяги, после выгорания топлива он переместился в положение впереди вектора тяги. Это явилось причиной изменения компонентов смещения углового ускорения вдоль обеих осей U' и V'. Компонент V' смещения углового ускорения, подсчитанный за последние 150 сек активного участка взлета, показан на рис. 24.10.
ЦАП настраивал свои параметры в пределах закона управления ЖРД РСУ и в соответствии с изменяющимся ускорением смещения.

Рис. 24.9 Команды управления по тангажу и фактическое изменение тангажа при взлете с Луны Apollo-11.

Рис. 24.10. Подсчитанный компонент V' углового ускорения в конце активного участка траектории взлета с Луны Apollo-11.

Рис. 24.11. Число включений ЖРД оси V реактивной системы управления на активном участке траектории взлета Apollo-11

Общее число зажиганий ЖРД РСУ оси V в течение всего активного участка взлета показано на рис. 24. 11.
После взлета во время маневра по тангажу управление ориентацией вокруг оси V поддерживалось около 200 сек зажиганием только +V ЖРД.
Позднее амплитуда предельного цикла увеличилась и для поддержания ориентации стали включаться +V ЖРД и -V ЖРД. Хотя -V момент создает угловое ускорение в том же направлении, в котором действует ускорение смещения от ЖРД взлетной ступени, однако +V момент и -V момент создаются ЖРД РСУ, дающими тягу вверх (+Х) и поэтому не происходит потери AV. Возникновение моментов +V и -V объясняется колебанием взлетной ступени вследствие плескания топлива в баках.
Перед концом активного участка взлета после перемены знака смещения углового ускорения не подавалось команд на зажигание +V ЖРД и управление ориентацией поддерживалось вокруг оси V только включением -V ЖРД. [19.]

  Профиль  
  
    
#10658  Сообщение 01.11.17, 23:14  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
2.5. Бесплатформенная аварийная система управления лунного корабля

Наряду с основной системой управления и навигации, в которой используется гиростабилизированная платформа, лунный корабль имеет бесплатформенную аварийную систему управления и навигации.
Основное назначение аварийной системы управления состоят в обеспечении встречи и стыковки лунного корабля с командным отсеком в любой момент их раздельного полета, если отказала основная система управления и навигации.
Аварийная система может осуществлять управление кораблем Apollo на любом участке траектории полета Земля-Луна-Земля и это было доказано в полете Apollo-13.

  Профиль  
  
    
#10659  Сообщение 01.11.17, 23:15  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
Описание бесплатформенной аварийной системы управления

Аварийная система управления разработана фирмой TRW (США). Функциональная блок-схема системы представлена на рис. 25.1.
Блок чувствительных элементов аварийной системы состоит из трех маятниковых акселерометров, трех гироскопов и электронного оборудования. Оси чувствительных элементов образуют ортогональный трехгранник и параллельны осям тангажа, рыскания и крена. Чувствительные элементы выдают информацию при помощи импульсных датчиков моментов со следующими характеристиками.

Рис. 25.1. Блок-схема бесплатформенной аварийной системы управления лунным кораблем

Чувствительные элементы монтируются на прецизионной-установочной раме, привязка которой к корпусу корабля осуществляется с помощью прецизионных поверхностей. Никаких приспособлений для изоляции вибраций не применяется.
Бортовая ЭЦВМ аварийной системы управления универсального типа имеет запоминающее устройство на 4096 слов и решает задачи управления и навигации. Опорная система координации задается матрицей направляющих косинусов, характеризующей ориентацию приборных осей и осей инерциальной системы координат. Коррекция направляющих косинусов по измерениям гироскопов производится каждые 20 сек. Измеренные по связанным осям составляющие приращения скорости преобразуются в инерциальную систему координат каждые 40 мсек. Программа полета предусматривает автономную первоначальную выставку и калибровку приборов.

  Профиль  
  
    
#10660  Сообщение 01.11.17, 23:16  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 29343
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 384 раз.
Россия
Работа бесплатформенной аварийной системы управления

Двумя участками, на которых работа аварийной системы управления в максимальной степени подвержена влиянию динамики полета лунного корабля, являются участки спуска и подъема (обычно разделенные отрезком времени, в течение которого лунный корабль находится на поверхности Луны). На каждом участке – при посадке на Луну и взлете с Луны – производится изменение скорости на 1830 м/сек в течение 10 мин, сопровождающееся маневрами разворота, предельными циклами и вибрацией.
Перед началом спуска с орбиты ИСЛ осуществляется начальная выставка координат аварийной системы управления по данным основной системы управления и навигации, определяется начальное значение навигационного вектора состояния и производится компенсация смещений гироскопов и акселерометров. Смещение нулей гироскопов определяется путем сравнения с данными ориентации, вырабатываемыми основной системой управления и навигации; нули акселерометров определяются по сигналам, снимаемым с чувствительных элементов аварийной системы на пассивном участке траектории. На поверхности Луны вторично производятся выставка и определение смещения нулей чувствительных элементов.
После отделения лунного корабля от командного отсека аварийная система работает в режиме дублирования основной системы управления и навигации, осуществляющей спуск корабля. В фазе торможения при заходе на посадку с работающим ЖРД, если возникнет аварийная ситуация и переход на аварийную систему управления, система должна вывести лунный корабль на безопасную орбиту и обеспечить встречу и стыковку с командным отсеком.
В условиях нормального снижения и посадки аварийная система используется для подтверждения правильности работы основной системы управления и навигадии.
В случае отказа основной системы управления после перехода на ручное управление посадкой лунного корабля аварийная система должна выдавать информацию об ориентации корабля.
Сразу же после посадки на поверхность Луны аварийная система переводится на режим расчета навигационных задач старта с Луны и встречи с командным отсеком. При нормальных условиях взлета с Луны аварийная система дублирует основную систему управления и навигации. [23.]

  Профиль  
  
    
Начать новую тему Ответить на тему  [ Сообщений: 40663 ]  Стрaница Пред.  1 ... 530, 531, 532, 533, 534, 535, 536 ... 2034  След.

   Похожие темы   Автор   Ответы   Последнее сообщение 
В этой теме нет новых непрочитанных сообщений. Американцы сравнивают инфляцию при Трампе и при Байдене.

Ёк-Макарёк

25

13.04.24, 08:08

В этой теме нет новых непрочитанных сообщений. Простой опрос..

Wudu2

283

09.04.24, 21:09

В этой теме нет новых непрочитанных сообщений. Rzeczpospolita: Опрос: должна ли Польша выслать посла России?

Saruman

55

03.04.24, 10:10

В этой теме нет новых непрочитанных сообщений. Тупые американцы

vs773

8

28.03.24, 06:00




[ Time : 0.270s | 24 Queries | GZIP : Off ]