Были ли американцы на Луне? Опрос


Куратор темы: Уралец



Начать новую тему Ответить на тему  [ Сообщений: 19451 ]  Стрaница Пред.  1 ... 529, 530, 531, 532, 533, 534, 535 ... 973  След.

Были ли американьци на Луне
Да 26%  26%  [ 47 ]
Уралец, Политрук, Тракторист, hunta, Синий апельсин, val1954, Простите великодушно, Soft123, Dovbnya, VSU, voleg5, Wal, Bear22, Гуго де Аришак, Авраам, Дмитрий, Игорь, Машинист, Довгочхун, Неэлитный, shura, sturm, Екатеринбуржец, Мляхин-Бухин, sanyok, mik, jericho, malia25, ILPetr, Валера Н.С., santey, ватервейс, Опасный, Барыга, Ромашки спрятались, Шарик, coon, незнамокто, Жигули, Бёртон, Руссиано, bootini
Нет 74%  74%  [ 131 ]
Летчик-налетчик, Gilmir, I'm, astalavista, system, Seaman, vs773, gogun, санитар, woland69, GLOBUS_RU, Лук, Med, Аленка, Медвежуть, Ворчун, TambWolf, Борзый, Торк, Redoutable, johannwob, Yetty, Зеленый Иван, GARRI51, Hant, Far East, pt_usa, Прохорold, dimkin, B.G., Лубенчанин, Мухельзон, Пфердыч, Индифферент, waheed, IgorGr, Dworkin, Моцарт, Tired Cat, Maxsbor, Irma-is-home, ЦВЕТОЧЕК, LeDokoL, кдво, Oldmerin, kvid, Ocean, aqvarium12, Wildcat, ВладимирТ90, Мордвин, Зловунов, Зося, Лика, Бордюр, vasis, Пиксол, antisaks, Простой2, Zugzwang, Sandr0, alex_CA, Алабай, Andy_CZ, Пушыстый ПесецЪ, aleksa77, ёкарныйбабай, Лапоть, камчан, Додж, Чупакабра, KoTMaT, inbox, parasol, ozzy, АЛЕКС..., Artooro, 10111, Resident-007, Tolmach.001, Cool17304, GOLBERG, CRIMSON, alex_74, lisica, andrex13, OLP-10, Сталкер, Reader, Зденик, Кот_Инвойс, Nord Stream, zztop, орнитолог, Мистер Фикс, Old_Fox, Аспирант, 0dess1t, kopaldis, Ледогор, Re, S_Finks, kinet, Либерман, Wudu2, дед Пихто, Москаль з Батькiвщины, j0ker, мираж, Коля, ALich, вась вась, bes, Громобой, Какамалака, Tolyanych, Ботан, Karavanbashi, Вася Rabinovich
Всего голосов : 178
Автор  
#10621  Сообщение 01.11.17, 22:44  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
1.6. Космические летные испытания двигательных установок корабля Apollo
После обширной программы наземных испытаний в Уайт-Сэндз, шт. Нью-Мексико, включавшей проверку работы двигательных установок на всех ожидаемых режимах работы, в барокамере на экспериментальном образце корабля Apollo, был начат этап космических летных испытаний. На этом этапе были решены следующие задачи: отработка двигательных установок в беспилотном полете (Apollo-5), отработка двигательных установок в пилотируемом полете по геоцентрической орбите (Apollo-9), отработка двигательных установок в пилотируемом полете по окололунной орбите (Apollo-10). Apollo-5 и Apollo-9 были оборудованы контрольно-измерительной аппаратурой, используемой только на этапе летных испытаний конструкции (аппаратура «ЛИ»), и аппаратурой с кодово-импульсной модуляцией (аппаратура «КИМ»), которая соответствовала штатному составу измерений и устанавливалась на все последующие летные экземпляры кораблей Apollo. Информация аппаратуры «КИМ» передавалась на Землю в реальном масштабе времени для того, чтобы контролировать характеристики космического аппарата в процессе полета. Телеметрическая информация с аппаратуры «ЛИ» для оценки систем была доступной после полета. Сочетание контрольно-измерительной аппаратуры «КИМ» и «ЛИ» на первых аппаратах обеспечило преемственность между летными и наземными испытаниями, а также оказалось полезным в отношении анализа полетных ненормальностей. На рис. 16.1 и 16.2 приведены схемы двигательных установок посадочной и взлетной ступеней Apollo с контрольными приборами.

Рис. 16.1. Схема контрольно-измерительной аппаратуры двигательной установки посадочной ступени лунного корабля.

  Профиль  
  
    
#10622  Сообщение 01.11.17, 22:45  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
Apollo-10. Двигательная установка посадочной ступени.
Двигательная установка посадочной ступени лунного корабля дважды запускалась в полете Apollo-10. Первый запуск – переход на траекторию спуска, второй запуск – фазирование орбиты.
Работа двигательной установки посадочной ступени протекала следующим образом. Давление в баке со сверхкритическим гелием перед стартом возрастало со скоростью 0,539 ат/ч. Средний темп роста давления во время полета в условиях невесомости перед первым запуском составлял 0,414 ат/ч. Такое снижение скорости роста давления привело к более низкому давлению в бачке с гелием в момент повторного запуска двигателя по сравнению с ожидавшимся уровнем.

Рис. 16.2. Схема контрольно-измерительной аппаратуры двигательной установки взлетной ступени лунного корабля.

Эффект растворимости гелия в компонентах топлива снижает давление в газовых подушках топливных баков. Растворимость гелия в окислителе приблизительно в 5 раз больше, чем в горючем, поэтому давление в баках окислителя снижается сильнее, чем в баках горючего. Давления наддува баков в полете были получены по датчикам на входе в двигатель (GQ3611P и GQ4111P). Величины давлений по этим датчикам в предстартовых условиях отличаются от давлений в газовых подушках топливных баков на величину гидростатического подпора компонентов. Этого гидростатического подпора нет при полете в условиях невесомости. 13 мая 1969 г. баки горючего были наддуты до 13,59 ата при 22,3°С. В день пуска, 18 мая, давление в баках понизилось до 13,22 ата при 22,8°С, что указывает на некоторое растворение гелия в течение 5 сут стоянки ракеты на пусковом столе. Первые полетные данные были получены во время проверки лунного корабля на 83-м ч полета; давление составило 10,77 ата при 21,2°С. Через 13 ч эти величины почти не изменились (10,70 ата при 21,0°C), что указывает на достижение состояния, близкого к полному насыщению.
По давлениям на входе в двигатель и в камере сгорания был рассчитан расход компонентов топлива. Расход горючего при полной тяге отличался от расчетных значений на ?1%, – расход окислителя на ?0,5%.
Тяга рассчитывалась двумя методами. По первому методу использовались данные предполетных испытаний двигателя и регистрируемое в полете давление в камере сгорания:

где ?=0,975 – коэффициент потерь; pк=7,474 ата – давление в камере сгорания; Кп= 1,7695 – коэффициент тяги в пустоте; Fкр=350,0 см? – площадь критического сечения сопла. Рассчитанная величина тяги составила 4513 кг. Ожидаемая величина тяги составляла 4495 кг. Расхождение величины менее 0,5%.
Кроме того, тяга двигателя была вычислена с использованием уравнения движения космического корабля

где G=13 876 кг – средний за 12 сек вес лунного корабля; а=3,170 м/сек? – среднее ускорение. Тяга, вычисленная по этому методу, составила 4480 кг.
Этот метод считается более точным, так как расход массы лунного корабля от момента старта до повторного запуска двигательной установки посадочной ступени составлял менее 1 % массы аппарата в момент старта.
Удельный импульс, рассчитанный по тяге и расходу топлива, составил 304,2 сек.
По уравнению

где ?V – приращение скорости в результате второго включения двигателя; Gн – начальный вес; Gк – конечный вес; g =9,807 м/сек?, вычисленный удельный импульс составил 304,3 сек. Эти расчеты хорошо согласуются с ожидавшейся величиной 303,2 сек.
В табл. 9 приведены расчетные и фактические летные характеристики двигательной установки посадочной ступени.
Таблица 9

  Профиль  
  
    
#10623  Сообщение 01.11.17, 22:46  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
Двигательная установка взлетной ступени
Двигательная установка взлетной ступени лунного корабля запускалась в полете Apollo-10 дважды. Первый запуск длился 15 сек. Продолжительность второго запуска (до выработки топлива) составила 213 сек, тяга 100%.
В основу расчета характеристик двигателя взлетной ступени были положены значения параметров, замеренные во время второго запуска.
Секундный расход рассчитывался путем определения количества топлива, израсходованного с момента начала запуска до обнажения датчиков полной выработки компонентов топлива. Соответствующие данные приведены в табл. 10.
Остаток топлива в баках в момент обнажения датчиков полной выработки компонентов топлива состоял из 18,55 кг горючего и 21,59 кг окислителя. Кроме того, дополнительный расход 10,02 кг окислителя вызван испарением и повышенным расходом его после выработки горючего. Рассчитанный секундный расход топлива составил 5,008 кг/сек по сравнению с ожидавшейся величиной 5,103 кг/сек.
Таблица 10

Сравнительные данные по измерениям давлений в двигательной установке взлетной ступени при наземных и летных испытаниях приведены в табл. 11.
Таблица 11

Удельный импульс двигательной установки взлетной ступени лунного корабля в целом, т. е. с учетом расхода топлива двигателями РСУ рассчитывается по отношению

Из РСУ лишь двигатели, создававшие тягу в направлении X, параллельном направлению тяги основного двигателя, участвовали в создании приращения скорости лунного корабля, остальные двигатели РСУ работали сбалансированными парами.
Удельный импульс основной двигательной установки взлетной ступени лунного корабля рассчитывался по уравнению

где f – доля топлива, идущего на РСУ, расходуемая «Х-двигателями», ДУ и РСУ – секундный расход топлива для основной двигательной установки и всех двигателей РСУ соответственно, Jуд.РС —удельный импульс РСУ.
Вычисленный таким образом удельный импульс двигательной установки взлетной ступени лунного корабля составил 309,2 сек (ожидавшаяся величина 308,8 сек). Тяга двигателя была вычислена по формуле

Предварительные расчеты дали величину тяги 1570 кг. Более низкая величина тяги в полете по сравнению с ожидавшейся величиной объясняется пониженным давлением на выходе из блока регуляторов системы наддува. Результаты летных испытаний двигательной установки взлетной ступени лунного корабля приведены в табл. 12.
Таблица 12

  Профиль  
  
    
#10624  Сообщение 01.11.17, 22:47  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
Apollo-11. Двигательная установка посадочной ступени

Двигательная установка включалась дважды в полете Apollo-11. Первый запуск, обеспечивший переход лунного корабля на траекторию снижения, производился над обратной стороной Луны. Второе включение (торможение при посадке) было произведено через 1 ч. Продолжительность работы двигательной установки составила при этом 756,6 сек.

  Профиль  
  
    
#10625  Сообщение 01.11.17, 22:47  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
Показания контрольно-измерительной аппаратуры. В основном датчики функционировали очень хорошо. Предельная разница в показаниях различных датчиков давления на выходе из блока регуляторов не превышала 0,18 ат. Во время торможения были зарегистрированы пульсации давления окислителя на входе в двигатель (размах колебаний до 4,71 ат). Пульсации давления в камере сгорания и давления горючего на входе в двигатель, а также изменения характеристик двигателя по результатам измерений не были обнаружены, что указывает на отсутствие в действительности пульсаций в линии окислителя. Такого рода пульсации наблюдались при наземных испытаниях, когда слабые колебания усиливались резонансом полости в узле установки датчика давления. Узел установки датчика состоит из тройника, один из штуцеров которого заглушен, а другой подсоединен к датчику. Условия резонанса изменяются в зависимости от количества гелия, попавшего в тройник и степени дросселирования двигателя.
Работа системы наддува при спуске протекала следующим образом. Система сверхкритического гелия работала на номинальном режиме (рис. 16.3). Графики давления окислителя на входе в двигатель и давления в камере сгорания приведены на pис 16.4, где видны также обсуждавшиеся выше пульсации. На рис. 16.5 показано снижение давления в топливных баках, обусловленное растворимостью гелия в компонентах топлива.

Риc. 16.3. Изменение давления в гелиевом баке двигательной установки взлетной ступени лунного корабля Apollo-11.

Работа системы контроля количества топлива на протяжении всего полета соответствовала расчетам. Ожидаемые величины и результаты телеметрии приведены на рис. 16.6. Эти данные показывают, что измеряемые в обоих баках количества окислителя расходятся к концу второго запуска. Датчик полной выработки компонентов топлива сработал на 685 сек после зажигания (за 71 сек до подачи команды на выключение двигателя и за 116 сек до расчетного момента полной выработки компонентов).

Рис. 16.4. Пульсации давления в камере ЖРД и давления окислителя на входе в ЖРД посадочной ступени лунного корабля Apollo-11

Рис. 16.5. Растворение гелия в горючем (а) и в окислителе (б) по расчетным и экспериментальным данным для двигательной установки посадочной ступени лунного корабля Apollo-11.

Рис. 16.6. Расход окислителя в двигательной установке посадочной ступени лунного корабля Apollo-11

После посадки лунного корабля на поверхность Луны для сброса давления из бачка с гелием и из топливных баков отработавшей двигательной установки посадочной ступени были открыты послепосадочные дренажные клапаны окислителя и горючего. Режим дренажа окислителя был номинальным. Дренаж горючего сопровождался неожиданным ростом давления горючего на входе в двигатель (рис. 16.7).
Дренаж гелиевого бачка одновременно с дренажем топливных баков привел к замораживанию горючего во внешнем теплообменнике. Наблюдавшийся неожиданно высокий рост давления горючего на входе в двигатель был вызван термическим расширением горючего в замкнутом объеме между замерзшим теплообменником и отсечными клапанами за счет теплоподвода от камеры сгорания. Для следующих полетов было решено не производить дренаж бачка со сверхкритическим гелием до взлета с Луны. Это достигается закрытием запорных гелиевых клапанов.

Рис. 16.7. Дренаж топливных баков двигательной установки посадочной ступени после посадки Apollo-11 на Луну.

Таблица 13

Таблица 14

В табл. 13 и 14 приводятся ожидаемые и летные характеристики двигательной установки посадочной ступени лунного корабля Appollo-11.

  Профиль  
  
    
#10626  Сообщение 01.11.17, 22:48  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
Двигательная установка взлетной ступени
Двигатель осуществил старт с посадочной ступени и вывел взлетную ступень на окололунную орбиту. Все давления и температуры были номинальными. ЖРД работал на полной тяге 237 сек. На рис. 16.8 показано давление гелия в баллонах системы наддува.

Рис. 16.8. Давление гелия в баллонах двигательной установки взлетной ступени лунного корабля Apollo-11

В табл. 15 и 16 даются расчетные и измеренные в полете характеристики двигательной установки взлетной ступени лунного корабля Apollo-11.
Таблица 15

Таблица 16

  Профиль  
  
    
#10627  Сообщение 01.11.17, 22:48  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
Глава II

Системы управления корабля Apollo

  Профиль  
  
    
#10628  Сообщение 01.11.17, 22:49  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
2.1. Реактивная система управления корабля Apollo.

Общая характеристика системы управления
Все 3 отсека корабля Apollo – командный отсек, служебный отсек и лунный корабль – имеют самостоятельные реактивные системы управления (рис. 21.1).

Рис. 21.1. Корабль Apollo: 1 – лунный корабль; 2 – служебный отсек; 3 – командный отсек; 4 – реактивная система управлений лунного корабля; 5 – посадочный ЖРД

РСУ корабля Apollo имеет 44 специальных ЖРД. На всех отсеках корабля Apollo РСУ импульсного типа работают на системах подачи топлива под давлением, с 2-компонентным самовоспламеняющимся топливом. Полный импульс, создаваемый ЖРД РСУ при одном включении, может быть в пределах от 0,4 до 25 000 кг. сек. Некоторые ЖРД РСУ в процессе полета могут включаться до 10 000 раз. РСУ обеспечивает управление кораблем Apollo на всех этапах полета.
РСУ служебного отсека управляет кораблем после его отделения от ступени S-IVB, на траектории полета Земля-Луна, при выходе на орбиту ИСЛ, после отделения лунного корабля управляет основным блоком (командный и служебный отсеки) на орбите ИСЛ и на траектории возвращения основного блока к Земле.
РСУ лунного корабля осуществляет управление при посадке на Луну, при взлете второй ступени лунного корабля с Луны, во время встречи и стыковки с основным блоком.
РСУ командного отсека управляет в процессе входа в атмосферу после отделения командного отсека от служебного. РСУ служебного отсека и лунного корабля кроме управления ориентацией могут осуществлять поступательные перемещения по всем трем осям. РСУ командного отсека управляет только ориентацией. РСУ могут работать на автоматическом режиме от цифрового автопилота (ЦАП) или на режиме ручного управления астронавтом.

  Профиль  
  
    
#10629  Сообщение 01.11.17, 22:49  
Луганчанка
Аватара пользователя

Регистрация: 16.01.2015
Сообщения: 26299
Откуда: Луганск
Благодарил (а): 4884 раз.
Поблагодарили: 3206 раз.
Новороссия
Жигульчик, не надо, пожалуйста!
Хочешь я соглашусь, что эти вонючие амеры были на Луне?

  Профиль  
  
    
#10630  Сообщение 01.11.17, 22:56  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
Там дальше самое интересное.
Про калоприёмники.

  Профиль  
  
    
#10631  Сообщение 01.11.17, 22:57  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
Реактивная система управления служебного отсека
РСУ служебного отсека управляет ориентацией и поступательным перемещением с момента выхода корабля на траекторию полета к Луне до разделения командного и служебного отсеков. ЖРД РСУ служебного отсека могут работать в импульсном или непрерывном режиме. При импульсном режиме последовательно выдаваемый ЖРД минимальный импульс равен 0,18 кг·сек. Одновременно один ЖРД может быть включен на сравнительно продолжительный режим постоянной тяги, а остальные могут работать в импульсном режиме управления ориентацией.
РСУ служебного отсека состоит из четырех самостоятельных независимо работающих подсистем – блоков, расположенных по окружности цилиндрической части служебного отсека, через 90°.
Каждый блок имеет связку из четырех ЖРД радиационного охлаждения и самостоятельную систему наддува баков и подачи топлива. В каждой связке два ЖРД расположены по направлению продольной оси аппарата и два в поперечном направлении. Поперечные ЖРД создают момент, вращающий аппарат вокруг оси X и поступательные перемещения вдоль осей У и Z. Продольные ЖРД создают вращающие моменты вокруг осей Y и Z и поступательное перемещение вдоль оси X. Для осуществления управления, как правило, ЖРД включаются попарно.
РСУ служебного отсека работает на 2-компонентном топливе, четырехокись азота (N2H4) используется в качестве окислителя и монометилгидразин (ММН) в качестве горючего, состав смеси (окислитель/горючее) равен 2. Каждый блок имеет запас топлива 147 кг; суммарный запас топлива для системы РСУ служебного отсека 588 кг.
Все блоки РСУ служебного отсека работают идентично по схеме, приведенной на рис. 21.2. для одного блока.

Рис. 21.2. Топливная система блока ЖРД реактивной системы управления служебного отсека

В гелиевый бак сферической формы из титанового сплава (6А1—4V) заправляется газообразный гелий под давлением 290 кг/см?. В линии подачи гелия установлены изолирующие клапаны. Электромагнитные изолирующие клапаны, удерживаемые в открытом положении магнитным замком и в закрытом положении нагруженные пружиной, имеют электропереключатель, указывающий экипажу положение клапана. Высокое давление гелия двумя блоками параллельных регуляторов снижается до рабочего давления 12,7 кг/см?. Для обеспечения надежности системы в каждом блоке последовательно соединены 2 регулятора. Если один из регуляторов отказал в открытом положении, другой регулятор этого блока будет поддерживать рабочее давление в системе. Если один из регуляторов отказал в закрытом положении, то регуляторы параллельного блока обеспечат требуемое давление.
Между регуляторами давления и входом в топливные баки установлены блоки последовательно-параллельных обратных клапанов и предохранительные клапаны. Обратные клапаны предохраняют систему от смешения испарившихся компонентов топлива. Каждый блок имеет 4 обратных клапана, соединенных в последовательно-параллельную цепь. Последовательное соединение препятствует смешению паров, а параллельное соединение обеспечивает необходимую подачу гелия в баки горючего и окислителя. Предохранительные клапаны защищают топливные баки от разрушения, если при изменении температуры сильно возрастает давление.
Предохранительный клапан снабжен разрывной диафрагмой, герметизирующей систему и исключающей утечку гелия до возникновения перенаддува. Диафрагма разрывается при давлении 16 кг/см?, предохранительный клапан открывается при давлении 16,5 кг/см? и закрывается при давлении 15,5 кг/см?.
Внутри каждого топливного бака имеется камера – мешок из тефлона, заполненная топливом. Когда бак наддувается, гелий поступает в полость между камерой и стенками бака, сжимает камеру и осуществляет подачу топлива в ЖРД. Все топливные баки РСУ Apollo выполнены по одной технологии из одинакового материала и с одинаковым диаметром 32 см. Баки имеют цилиндрическую форму и шарообразные днища, объем баков изменяется за счет длины цилиндрической части.
В каждом блоке РСУ служебного отсека по 2 бака для горючего и по 2 бака для окислителя. Баки каждого из компонентов топлива соединены параллельно и работают в системе как один бак.
В магистрали между топливными баками и ЖРД установлены электромагнитные изолирующие клапаны. Когда баки наддуты, изолирующие клапаны открыты и топливо поступает к клапанам ЖРД.
В период обслуживания РСУ служебного отсека изолирующие клапаны закрыты. Они открываются в момент старта и открыты в течение всего полета. В топливных магистралях горючего и окислителя за изолирующими клапанами и перед входом в ЖРД установлены фильтры, предохраняющие инжекторы ЖРД от загрязнения.
Количество топлива в баках РСУ служебного отсека определяется косвенным методом, посредством измерения количества гелия, вытекшего из гелиевого бака, в предположении отсутствия утечки гелия.
Масса гелия, перетекшая в топливные баки, определяется разностью между начальной массой газа в баке и измеренным количеством газа, оставшегося в баке. Количество топлива в баках определяется разностью между объемом топливных баков и объемом гелия, перетекшего в топливные баки.
Недостатком системы является отсутствие информации о составе смеси. Однако система простая и легкая, имеет единственный комбинированный датчик температуры и давления гелия.

  Профиль  
  
    
#10632  Сообщение 01.11.17, 22:57  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
Реактивная система управления лунного корабля
РСУ лунного корабля выполняет следующие функции.
1. Осуществляет отделение лунного корабля от основного блока.
2. Управляет ориентацией лунного корабля на активных и пассивных участках траектории полета.
3. Осуществляет поступательные перемещения при зависании лунного корабля перед посадкой на Луну.
4. Производит стыковку лунного корабля с основным блоком.
В дополнение к основным функциям, в случае преждевременного выключения ЖРД двигательной установки взлетной ступени, РСУ лунного корабля может сообщить взлетной ступени дополнительную скорость, необходимую для выхода на траекторию ИСЛ.
Для выполнения всех функций и с целью увеличения надежности РСУ лунного корабля выполнена в виде двух идентичных и самостоятельных систем А и В (рис. 21.3, 21.4).

Рис. 21.3. Компановка топливной системы реактивного управления лунного корабля на взлетной ступени.

Каждая из систем А и В имеет по 8 ЖРД, самостоятельную систему наддува баков и подачи топлива. Все ЖРД РСУ лунного корабля соединены по 4 ЖРД в четырех блоках, равномерно размещенных по периферии взлетной ступени. Два ЖРД в каждом блоке расположены параллельно оси Х и 2 ЖРД в плоскости, перпендикулярной оси X.
Два ЖРД каждого блока нормально обеспечиваются топливом из системы А, другие 2 из системы В. Нормально обе системы работают одновременно, но каждая из систем может обеспечить управление лунным кораблем. Промежуточная линия с клапанами, соединяющая системы А и В, и линия, соединяющая топливную систему ЖРД взлетной ступени и РСУ, обеспечивают максимальную гибкость РСУ лунного корабля.
РСУ лунного корабля работают на 3-компонентном топливе, в качестве окислителя используется N2O4 и в качестве горючего 50% смесь несимметричного диметилгидразина с гидразином. В топливных баках РСУ лунного корабля содержится 264 кг расходуемого топлива, кроме этого, в нормальных условиях полета РСУ лунного корабля расходует 82 кг топлива двигательной установки взлетной ступени.

Рис. 21.4. Схема топливной системы реактивного управления лунного корабля.

Многие агрегаты РСУ лунного корабля, регуляторы давления, обратные клапаны, предохранительные клапаны, гелиевый бак и топливные баки, по конструкции и действию подобны агрегатам РСУ служебного отсека.
Гелиевый бак заполняется гелием под давлением 210 кг/см? (рис. 21.4), В магистрали подачи гелия установлены изолирующие пиротехнические клапаны, герметизирующие гелий под высоким давлением до активизации системы. Поток гелия, пройдя фильтры, последовательные регуляторы давления, последовательно-параллельные обратные клапаны, поступает в топливные баки, работающие так же, как топливные баки РСУ служебного отсека. Изолирующие клапаны в линии подачи топлива на выходе из баков, 2-ходовые соленоидного типа с магнитными замками, удерживающими клапан в открытом и закрытом положении, имеют индикаторы положения клапана. Такие же клапаны установлены в линии, соединяющей системы А и В, и в линии, соединяющей РСУ с топливной системой ЖРД посадочной ступени. В условиях нормального полета топливо из баков доходит до изолирующего клапана.
После активации системы изолирующие клапаны открыты и топливо доходит до клапанов ЖРД. Если ЖРД отказывает, клапаны в линиях окислителя и горючего, изолирующие блок, закрываются и выключают 2 ЖРД этого блока. Клапаны в линиях, соединяющих системы А и В, при нормальных условиях полета закрыты; если нарушается работа одной из систем, клапаны открываются и ЖРД обеих систем могут работать, используя топливо противоположных систем.
Когда РСУ лунного корабля питается топливом двигательной установки ЖРД взлетной ступени, главный изолирующий клапан закрыт, но перед выключением ЖРД взлетной ступени в соединительной магистрали клапан закрывается, а главный изолирующий клапан открывается. Эта операция критическая по времени и осуществляется таким образом, чтобы избежать образования газовых гелиевых пробок в трубопроводах РСУ лунного корабля.

  Профиль  
  
    
#10633  Сообщение 01.11.17, 22:58  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
Реактивная система управления командного отсека
РСУ командного отсека выдает импульсы, необходимые для управления ориентацией командного отсека при входе в атмосферу Земли на этапе от момента отделения командного отсека от служебного до начала раскрытия парашютной системы. Кроме номинального режима полета РСУ командного отсека осуществляет управление на всех режимах аварийного возвращения командного отсека.
РСУ командного отсека состоит из двух независимых систем А и В. Каждая из систем А и В имеет по 6 ЖРД абляционного охлаждения, самостоятельную систему наддува баков и подачи топлива. Все оборудование РСУ командного отсека расположено под герметической кабиной экипажа в задней части командного отсека. В нормальных условиях полета обе системы А и В работают одновременно, однако, каждая система может обеспечить все управление командным отсеком (рис. 21.5).

Рис. 21.5. Схема топливной системы реактивного управления командного отсека.

Каждая из РСУ командного отсека идентична блоку РСУ служебного отсека, за исключением того, что РСУ командного отсека имеет дополнительно соединительные линии и перепускные клапаны для осуществления слива топлива и инертного газа перед посадкой командного отсека. Большинство важных деталей РСУ командного отсека сгруппировано на панелях. При неисправностях вся панель снимается и заменяется запасной.
На выходе из гелиевого бака в линии подачи гелия установлено 2 изолирующих пироклапана, они закрыты до момента отделения командного отсека перед входом в атмосферу. После открытия пироклапанов гелий проходит регуляторы, снижающие давление до 20,8 кг/см? и поступает в газовую полость топливных баков, работающих так же, как баки РСУ служебного отсека. До активизации системы топливо в баках изолируется от ЖРД разрывными диафрагмами. После активизации системы (открытие пироклапанов, изолирующих гелий под высоким давлением) увеличивается давление,которое разрывает диафрагмы в топливных магистралях, и топливо поступает к клапанам ЖРД.
Чтобы обеспечить слив топлива и гелия из РСУ перед посадкой командного отсека, в системе имеются пиротехнические клапаны, соединяющие гелиевые магистрали системы А и В, пиротехнический перепускной клапан, открывающий доступ гелию внутрь камеры топливного бака для вытеснения остатков топлива, пиротехнические клапаны, соединяющие топливные магистрали системы А и В, пиротехнические клапаны, открывающие сливные отверстия из системы.
ЖРД РСУ командного отсека существенно отличаются от ЖРД РСУ служебного отсека.

  Профиль  
  
    
#10634  Сообщение 01.11.17, 22:59  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
ЖРД реактивной системы управления служебного отсека и лунного корабля
ЖРД РСУ служебного отсека и лунного корабля с тягой 45,5 кг импульсного типа, радиационного охлаждения, работающие на монометилгидразине или 50% смеси гидразина и несимметричного диметилгидразина в качестве горючего и N2O4 в качестве окислителя, квазиустановившееся давление в камере сгорания 7 кг/см?. Вес ЖРД 2,27 кг.
ЖРД состоит из двух частей – камеры сгорания с соплом, оканчивающимся сечением с отношением площадей 7:1, и удлинительного сопла (рис. 21.6). Камера сгорания, механически обработанная из молибденовой поковки с кварцевым покрытием, предохраняющим молибден от окисления.

Рис. 21.6. ЖРД реактивной системы управления служебного отсека и лунного корабля

Удлинительное сопло из кобальтового сплава с восемью кольцами жесткости по наружной поверхности. Инжектор из алюминиевого сплава и нержавеющей стали с отверстиями постоянного сечения. В конструкции ЖРД имеется воспламенительная предкамера, возбуждающая горение и сводящая к минимуму детонацию, так как сильные скачки давления могут разрушить ЖРД. Детонация гасится путем опережения впрыска горючего в камеру на несколько миллисекунд до окислителя.
Внутри предкамеры 2 отверстия для окислителя и горючего. При открытии инжекторных клапанов поток топлива по прямому каналу поступает в предкамеры и возбуждает горение, остальное топливо поступает к отверстиям, окружающим предкамеры.
Вследствие гидравлического запаздывания в инжекторе воспламенение этого топлива происходит на 3 мсек позднее, чем внутри предкамеры.
Топливные инжекторные клапаны должны быстро реагировать на электрические команды «открыто», «закрыто», и обеспечивать герметическое закрытие без просачивания топлива (рис. 21.7). Клапаны монтируются непосредственно на инжекторе, имеют соленоиды с отдельными электросистемами для автоматического и ручного управления.
После поступления на ЖРД команды «открыть» топливные клапаны, проходит 9 мсек до полного открытия, поток топлива достигает камеры сгорания через 11 мсек и через 12 мсек после команды «открыть» возникает горение.

Рис. 21.7. Топливный инжекторный клапан

Характеристики ЖРД РСУ служебного отсека и лунного корабля приводятся на рис. 21.8 а,б.

Рис. 21.8 (а). Характеристики ЖРД реактивной системы управления служебного отсека и лунного корабля. Удельный импульс; суммарный импульс; состав смеси в функции времени

Рис. 21.8 (б). Тяга ЖРД в функции времени

  Профиль  
  
    
#10635  Сообщение 01.11.17, 22:59  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
ЖРД реактивной системы управления командного отсека
ЖРД РСУ командного отсека с тягой 42,2 кг абляционного охлаждения работают на монометилгидразине и N2O4, ква-зиустановившееся давление в камере сгорания 10,5 кг/см?. Вес ЖРД 4,08 кг (рис. 21.9). ЖРД работают главным образом в импульсном режиме, но могут использоваться и в режиме постоянной установившейся тяги. Два топливных инжекторных клапана той же конструкции, что и клапаны ЖРД РСУ командного и служебного отсеков, управляют подачей горючего и окислителя. [1—18]

Рис. 21.9. ЖРД реактивной системы управления командного отсека

Рис. 21.10. Характеристики ЖРД реактивной системы управления командного отсека. (а). Удельный импульс, суммарный импульс и состав смеси в функции времени. (б). Тяга ЖРД в функции времени.

Характеристики ЖРД РСУ командного отсека на рис. 21.10а,б.

  Профиль  
  
    
#10636  Сообщение 01.11.17, 23:00  
Старожил

Регистрация: 03.05.2015
Сообщения: 7484
Благодарил (а): 0 раз.
Поблагодарили: 22 раз.
Жигули писал(а):
Там дальше самое интересное.
Про калоприёмники.
На astronautix.com гораздо интереснее.. но на буржуинском :)

  Профиль  
  
    
#10637  Сообщение 01.11.17, 23:00  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
2.2. Цифровой автопилот космического корабля Apollo

Впервые в условиях пилотируемого космического полета цифровой автопилот (ЦАП) был применен на космическом корабле Apollo.
Анализ результатов полетов кораблей Apollo с ЦАП показывает хорошее совпадение прогнозируемых и наблюдаемых процессов управления. Первое применение ЦАП на космическом корабле показало, что он во многих отношениях превосходит аналоговые автопилоты, не только обеспечивает требуемые динамические характеристики, но и обладает многими свойствами, недоступными аналоговой системе. К этим свойствам относятся автоматическая оценка и коррекция эксцентриситета вектора тяги, автоматическое изменение коэффициентов усиления по мере выгорания топлива, возможность осуществления различных режимов управления.

  Профиль  
  
    
#10638  Сообщение 01.11.17, 23:01  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
Общее описание работы цифрового автопилота

На активных участках траектории полета управление аппаратом по каналам тангажа и рыскания осуществляется отклонением на кардане ЖРД служебного отсека. Управление ориентацией по каналу крена производится ЖРД реактивной системы управления. Расчет команд на отклонение вектора тяги для компенсации ошибок между требуемой и измеренной ориентацией является функцией управления вектором тяги цифрового автопилота.
Управление вектором тяги ЦАП по каналам тангажа и рыскания осуществляется следующим образом.
1. В контуре управления траекторией полета бортовой ЭЦВМ командного отсека подсчитываются приращения углов ориентации в инерциальной системе координат и преобразуются в координаты, связанные с аппаратом.
2. Блок преобразования данных измеряет углы кардана блока инерциальных измерений и формирует импульсы, представляющие малые фиксированные приращения этих углов. Приращения углов суммируются в бортовой ЭЦВМ командного отсека и отсылаются в регистр блока преобразования данных.
3. В регистре блока преобразования данных, в соответствии с программой ЦАП производится квантование и по обратной разности углов блока преобразования данных на каждом интервале находятся малые приращения.
4. Приращения величин в блоке преобразования данных на каждом интервале квантования преобразуются в координаты, связанные с аппаратом, и вычитаются из командных приращений, которые вырабатываются по программе управления траекторией полета.
5. Полученная разность представляет собой приращение ошибок ориентации; эти приращения суммируются и дают ошибку ориентации в координатах, связанных с аппаратом. Небольшие ошибки начальной ориентации, возникающие в результате выполнения маневра осадки топлива перед запуском ЖРД служебного отсека не учитываются и обнуляются в регистре ЦАП Apollo перед запуском ЖРД. Это делается с той целью, чтобы исключить возбуждаемые начальными ошибками изгибные колебания Apollo. Когда лунный корабль отстыкован от основного блока, проблемы изгибных колебаний не возникает и начальные ошибки ориентации учитываются точно.
6. Ошибки ориентации поступают в фильтры компенсации каналов тангажа и рыскания ЦАП, в которых вырабатываются команды сервомотором кардана ЖРД для углов тангажа и рыскания (рис. 22.1). Эти компенсирующие сигналы должны также обеспечить демпфирование изгибных колебаний аппарата и колебаний в результате плескания топлива.

Рис. 22.1. Функциональная блок-схема управления вектором тяги в плоскости тангажа (или рыскания).

7. ЦАП Apollo имеет два компенсирующих режима работы: первый с широким диапазоном для стабилизации аппарата от плескания при полной заправке, требующейся для полета на Луну, второй – узкий диапазон для стабилизации от плескания топлива при любых заправках. ЦАП начинает управление вектором тяги в широком диапазоне и остается на этом режиме до тех пор, пока астронавт не переключит его на режим работы в узком диапазоне. Он осуществляет переключение с помощью кодового слова, набираемого на клавишах пульта управления. Это переключение астронавт осуществляет, когда плескание топлива приводит к чрезмерным колебаниям ЖРД. Таким образом извлекается максимум преимуществ из широкого диапазона в начале неустойчивого режима управления вектором тяги.
8. ЦАП командного и служебного отсеков имеет только один компенсирующий режим работы.

Рис. 22.2. Функциональная блок-схема контура коррекции эксцентриситета тяги в плоскости тангажа (или рыскания).

9. Как показано на рис. 22.2, суммарный командный сигнал к каждому серводвигателю кардана складывается из сигнала компенсирующего фильтра и сигнала контура коррекции смещения вектора тяги. Последняя составляющая смещает суммарный командный сигнал таким образом, что при нулевом выходе из компенсирующего фильтра вектор тяги проходил бы точно через центр тяжести, если отсутствует движение центра тяжести и вектора тяги относительно командного угла.
10. Контур управления вектором тяги состоит из двух главных элементов – суммирующего регистра, выдающего смещение, и низкочастотного фильтра, проводящего суммарный командный сигнал с частотой квантования ЦАП. Разность между величиной смещения и выходным сигналом низкочастотного фильтра вводится на суммирующий регистр каждые 0,5 сек с тем, чтобы медленно корректировать ошибки регулирования, вызванные эксцентриситетом вектора тяги. Это в некоторой степени эквивалентно введению пропорционально-интегральной передаточной функции между компенсирующим фильтром и суммарным сигналом управления.
Контур управления вектором тяги работает таким образом, что его сигналы не возбуждают колебаний топлива и изгибных колебаний и мало влияют на устойчивость космического аппарата как твердого тела.
11. Астронавт задает начальные условия суммирующему регистру контура коррекции смещения вектора тяги и низкочастотному фильтру перед началом управления вектором тяги. Позднее начальные условия суммирующему регистру задают снова, чтобы осуществить так называемую одноразовую корреляцию.
12. Если ЦАП управляет основным блоком, величина в суммирующем регистре контура коррекции смещения вектора тяги не изменяется до осуществления одноразовой коррекции через 3 сек после запуска ЖРД. Эта коррекция состоит в добавлении к содержимому суммирующего фильтра удвоенного изменения выходного сигнала низкочастотного фильтра (удвоение сигнала необходимо для компенсации запаздывания фильтра).
Следуя такой коррекции, содержимое суммирующего фильтра контура коррекции смещения вектора тяги изменяется каждые 0,5 сек, как показано на рис. 22.3.

Рис. 22.3. Структурная схема компенсирующего фильтра цифрового автопилота: а – корабль Apollo, широкий диапазон работы; б – корабль Apollo, узкий диапазон работы; в – основной блок

13. В ЦАП Apollo возрастание содержимого в суммирующем регистре контура коррекции смещения вектора тяги начинается с момента запуска ЖРД. Однако суммирующий регистр обнуляется при переключении режимов на текущее значение выходного сигнала низкочастотного фильтра. Предполагается, что переключение происходит после начального неустановившегося режима низкочастотного фильтра. При переключении режимов низкочастотный фильтр обнуляется и поступающая на сервомоторы команда сдвигается к сигналу суммирующего регистра контура коррекции смещения вектора тяги. После переключения контур коррекции смещения вектора тяги продолжает работать с теми же коэффициентом усиления, частотой квантования и постоянной времени низкочастотного фильтра.
14. Если ЦАП управляет основным блоком, то в контуре управления траекторией полета коэффициент усиления остается постоянным. Когда ЦАП управляет кораблем Apollo, то при переключении режимов коэффициент усиления в контуре управления траекторией полета уменьшается.
Канал ЦАП управления вектором тяги по крену обеспечивает ориентацию и управление угловой скоростью относительно оси крена с помощью ЖРД РСУ. Его задача сводится к сохранению ориентации основного блока на активных участках траектории полета в пределах установленной зоны нечувствительности. Углы наружной рамки кардана стабилизированной платформы, которая параллельна оси крена, считываются, обрабатываются и дают приближенно ориентацию и угловую скорость. Для выработки команд на включение ЖРД РСУ используется логика переключения в фазовой плоскости.
Канал ЦАП управления вектором тяги по крену играет сравнительно малую роль, главную роль в управлении тягой и скоростью полета космического корабля играют каналы тангажа и рыскания.

  Профиль  
  
    
#10639  Сообщение 01.11.17, 23:02  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
Требования, предъявляемые к цифровому автопилоту

Основным требованием, предъявляемым к каналам тангажа и рыскания ЦАП, является обеспечение совместно с внешним контуром управления траекторией полета малых ошибок по скорости в момент выключения двигателя.
ЦАП должен ограничивать движение аппарата вокруг центра масс и изменение ориентации вектора тяги для того, чтобы минимизировать расход топлива и износ муфт сервоприводов, а также облегчить астронавтам управление кораблем.
ЦАП должен выполнять программы, включаясь при неизвестных начальных условиях и при изменяющихся характеристиках аппарата на активном участке траектории полета.
В момент запуска ЖРД служебного отсека могут возникнуть начальные возмущения, которые должно преодолеть управление вектором тяги ЦАП.
1. В результате осуществления маневра осадки топлива перед запуском ЖРД служебного отсека, начальные угловые скорости по тангажу и рысканию могут достигнуть 1 град/сек.
2. Результаты космических летных испытаний показывают, что плескание топлива вызывает колебания ориентации аппарата до 0,1 град/сек в момент запуска ЖРД служебного отсека.
3. Начальное продольное перемещение топлива (если не осуществлен маневр осадки топлива).
4. Перед запуском ЖРД служебного отсека бортовая ЭЦВМ командного отсека выдает сигнал на регулировку сервомоторов кардана и совмещение направления вектора тяги с расчетным положением центра тяжести. Но могут быть ошибки совмещения, являющиеся следствием неопределенности ориентации вектора тяги и неопределенности положения центра тяжести.
Утроенное среднеквадратичное значение угла эксцентриситета вектора тяги изменяется от 1,4° (полный) до 0,98° (пустой) для основного блока и от 1,25° (полный) до 0,71° (пустой) для корабля Apollo.
Максимальная расчетная скорость изменения угла эксцентриситета вектора тяги для корабля Apollo 0,003 град/сек в плоскостях тангажа и рыскания. Для основного блока эта скорость составляет 0,0083 град/сек в плоскости тангажа и 0,014 град/сек в плоскости рыскания.

  Профиль  
  
    
#10640  Сообщение 01.11.17, 23:02  
Ветеран
Аватара пользователя

Регистрация: 16.08.2014
Сообщения: 11655
Откуда: Тольятти
Благодарил (а): 0 раз.
Поблагодарили: 194 раз.
Россия
Характеристики космического корабля Apollo

Динамические характеристики корабля Apollo существенно отличаются от характеристик основного блока, поэтому потребовалась разработка двух самостоятельных программ для ЦАП, управляющего обоими аппаратами. Основные различия характеристик аппаратов состоят в следующем.
1. Частота изгибных колебаний корабля Apollo~2 гц, частота изгибных колебаний основного блока ~ 5 гц.
2. Отличия в плечах управляющей силы, положения центра тяжести и моментах инерции таковы, что при одном и том же отклонении ЖРД служебного отсека угловое ускорение основного блока в 4 раза больше углового ускорения корабля Apollo.
3. Влияние плескания топлива в баках корабля Apollo существенно отличается от влияния плескания топлива в баках основного блока из-за дополнительных масс жидкости, различных моментов инерции и положения центра тяжести.

  Профиль  
  
    
Начать новую тему Ответить на тему  [ Сообщений: 19451 ]  Стрaница Пред.  1 ... 529, 530, 531, 532, 533, 534, 535 ... 973  След.



   Похожие темы   Автор   Ответы   Последнее сообщение 
В этой теме нет новых непрочитанных сообщений. Будут ли российские космонавты на Луне?

Жигули

122

23.05.19, 22:47

В этой теме нет новых непрочитанных сообщений. Россия наращивает поставки нефти в США: американцы просят в три раза больше

LuckyStarrr

10

23.05.19, 14:44

В этой теме нет новых непрочитанных сообщений. Опрос в Екатеринбурге.

Четник

2

22.05.19, 00:11

В этой теме нет новых непрочитанных сообщений. Обратная сторона США: американцы массово «переселяются» на улицу

LuckyStarrr

29

11.05.19, 07:53




[ Time : 0.097s | 21 Queries | GZIP : On ]